MATH 430, SPRING 2022
 NOTES MARCH 30 - APRIL 8

Below $\mathfrak{A}=(\mathbb{N},<, S,+, \cdot, 0,1)$ is the standard model of PA. By compactness, PA has nonstandard models i.e. a model $\mathcal{B} \models P A$, such that $\mathcal{B} \neq \mathfrak{A}$. (See homework problem)

Now, suppose that \mathcal{B} is a nonstandard model of PA.
Theorem 1. \mathcal{B} is an end extension of \mathfrak{A} i.e. there is a one-to-one homomorphism $f: \mathbb{N} \rightarrow|\mathcal{B}|$ such that for all $a \in \operatorname{ran}(f)$ and $b \in|\mathcal{B}| \backslash \operatorname{ran}(f)$, $a<{ }^{\mathcal{B}} b$.
Proof. Define f by $f(n)=\left(S^{\mathcal{B}}\right)^{n}\left(0^{\mathcal{B}}\right)$. f is one-to-one, since $P A \models S$ is one-to-one. Next we can verify that f is a homomorphism:

- $f(0)=0^{\mathcal{B}}$ and $f(1)=S^{\mathcal{B}}\left(0^{\mathcal{B}}\right)=1^{\mathcal{B}}$, by definition;
- $n<m$ iff $f(n)<^{\mathcal{B}} f(m)$, this is because $P A \models S$ is order preserving.
- $f(S(n))=S^{\mathcal{B}}(f(n))$, this is because $P A \models S^{n+1}(0)=S\left(S^{n}(0)\right)$;
- $f(n+m)=f(n)+f(m)$, this is because $P A \models S^{n+m}(0)=S^{n}(0)+$ $S^{m}(0)$;
- $f(n \cdot m)=f(n) \cdot f(m)$, this is because $P A=S^{n \cdot m}(0)=S^{n}(0) \cdot S^{m}(0)$;

Finally, suppose that $a \in \operatorname{ran}(f)$ and $b \in|\mathcal{B}| \backslash \operatorname{ran}(f)$. We have to show that $a<^{\mathcal{B}} b$. Since $a \in \operatorname{ran}(f)$, by definition of f, for some $n, a=f(n)$. We show that $a=f(n)<^{\mathcal{B}} b$ by indiction on n :
(1) if $n=0$, since $P A \models 0$ is the least element, we have that $f(0)=$ $0^{\mathcal{B}}<b$.
(2) $n=k+1$ and inductively we assume that $f(k)<^{\mathcal{B}} b$. Then since $P A \models \forall x \forall y(x<y \rightarrow(S(x)<y \vee S(x)=y))$, we have that either $f(k+1)=S^{\mathcal{B}}(f(k))=b$ of $f(k+1)<{ }^{\mathcal{B}} b$. Since $b \notin \operatorname{ran}(f)$, it cannot equal $f(k+1)$. So $f(k+1)<{ }^{\mathcal{B}} b$.

It follows that \mathcal{B} contains an isomorphic copy of the natural numbers as an initial segment. For simplicity of notation, write n to denote $\left(S^{\mathcal{B}}\right)^{n}\left(0^{\mathcal{B}}\right)$. For example, we write 0 for $0^{\mathcal{B}}, 1$ for $S^{\mathcal{B}}(0)=1^{\mathcal{B}}, 2$ for $S^{\mathcal{B}}\left(S^{\mathcal{B}}(0)\right)$ and so on.

Similarly, for a formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ and a_{1}, \ldots, a_{n} in \mathbb{N}, we say that $P A \models$ $\phi\left[a_{1}, \ldots, a_{n}\right]$, if for any model $\mathcal{B} \models P A, \mathcal{B} \models \phi\left[a_{1}, \ldots, a_{n}\right]$.
Definition 2. Let ϕ be a formula ϕ in the language of $P A$.
(1) ϕ is Δ_{0} if it is logically equivalent to a formula with only bounded quantifiers (or no quantifiers).
(2) ϕ is Σ_{1} if it is logically equivalent to a formula of the form $\exists x_{1}, \ldots, \exists x_{n} \psi$, where ψ is Δ_{0}.
(3) ϕ is Π_{1} if it is logically equivalent to a formula of the form $\forall x_{1}, \ldots, \forall x_{n} \psi$, where ψ is Δ_{0}.
(4) ϕ is Δ_{1} if it is logically equivalent to both a Σ_{1} and a Π_{1} formula.

Examples of Δ_{0} formulas:

- all atomic formulas;
- $\phi_{\text {div }}(x, y)=\exists z<y(x \cdot z=y)$;
- $\phi_{\text {prime }}(x)=x>1 \wedge \forall z<x\left(\phi_{\text {div }}(z, x) \rightarrow z=1\right)$.

Note that if ϕ is Σ_{1}, then $\neg \phi$ is Π_{1}. Similarly, if ϕ is Π_{1}, then $\neg \phi$ is Σ_{1} Also, if both ϕ and $\neg \phi$ are Σ_{1}, then ϕ is Δ_{1}.

Theorem 3. If $\mathcal{B} \vDash P A$, and $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a Δ_{0}-formula, then for any a_{1}, \ldots, a_{n} in $\mathbb{N}, \mathfrak{A} \models \phi\left[a_{1}, \ldots a_{n}\right]$ iff $\mathcal{B} \models \phi\left[a_{1}, \ldots a_{n}\right]$.

Proof. This is by induction on the complexity of ϕ, using that \mathcal{B} is an end extension of \mathfrak{A}. Fix $\phi\left(x_{1}, \ldots, x_{n}\right)$ and natural numbers a_{1}, \ldots, a_{n}.

For the base case, if ϕ is atomic, by the existence of the function f in the proof of theorem 1 , it follows that $\mathfrak{A} \models \phi\left[a_{1}, \ldots a_{n}\right]$ iff $\mathcal{B} \models \phi\left[a_{1}, \ldots a_{n}\right]$.

If ϕ is a negation or a conjunction, the statement follows by the inductive hypothesis.

Now, suppose that ϕ is of the form $\forall y<x_{1} \psi\left(x_{1}, \ldots, x_{n}, y\right)$, where the inductive hypothesis holds for ψ. Then:
$\mathfrak{A}=\phi\left[a_{1}, \ldots a_{n}\right]$ iff
for all $b<a_{1}, \mathfrak{A} \models \psi\left[a_{1}, \ldots a_{n}, b\right]$ iff, by the inductive hypothesis,
for all natural numbers $b<a_{1}, \mathcal{B}=\psi\left[a_{1}, \ldots a_{n}, b\right]$.
For any $c \in|\mathcal{B}|$, if $c<a_{1}$, then $c \in \operatorname{ran}(f)$ i.e. it is a natural number. So, for all natural numbers $b<a_{1}, \mathcal{B}=\psi\left[a_{1}, \ldots a_{n}, b\right]$ iff $\mathcal{B} \models \phi\left[a_{1}, \ldots a_{n}\right]$.

As a corollary, one can show (the details are in your homework)
Corollary 4. Suppose $\mathcal{B} \models P A$ and a_{1}, \ldots, a_{n} are in \mathbb{N}. Then
(1) If $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a Σ_{1}-formula, if $\mathfrak{A} \models \phi\left[a_{1}, \ldots a_{n}\right]$, then $\mathcal{B} \models \phi\left[a_{1}, \ldots a_{n}\right]$.
(2) If $\phi\left(x_{1}, \ldots, x_{n}\right)$ is $a \Pi_{1}$-formula, if $\mathcal{B} \models \phi\left[a_{1}, \ldots a_{n}\right]$, then $\mathfrak{A}=\phi\left[a_{1}, \ldots a_{n}\right]$.
(3) If $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a Δ_{1}-formula, then $\mathfrak{A} \vDash \phi\left[a_{1}, \ldots a_{n}\right]$ iff $\mathcal{B} \vDash \phi\left[a_{1}, \ldots a_{n}\right]$.
(4) If $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a Σ_{1}-formula, then $\mathfrak{A} \vDash \phi\left[a_{1}, \ldots a_{n}\right]$ iff $P A \models$ $\phi\left[a_{1}, \ldots a_{n}\right]$.

Proof. For the first three items, the proofs are assigned as homework. For the last one, fix a Σ_{1}-formula $\phi\left(x_{1}, \ldots, x_{n}\right)$. For the first (easy) direction, suppose that $P A \models \phi\left[a_{1}, \ldots a_{n}\right]$. Then since $\mathfrak{A} \vDash P A$, we have that $\mathfrak{A} \models$ $\phi\left[a_{1}, \ldots a_{n}\right]$.

For the other direction, suppose that $\mathfrak{A} \vDash \phi\left[a_{1}, \ldots a_{n}\right]$. Then by item (1) above any for any model \mathcal{B} of PA , we have that $\mathcal{B} \models \phi\left[a_{1}, \ldots a_{n}\right]$. It follows that $P A \models \phi\left[a_{1}, \ldots a_{n}\right]$.

The primitive recursive functions are (total) functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$, that are built up from the constant function $f(x)=0$, projections, and the successor function S, by applying composition and the primitive recursion operation:

- $f\left(0, a_{1}, \ldots, a_{n}\right)=g\left(a_{1}, \ldots, a_{n}\right)$;
- $f\left(n+1, a_{1}, \ldots, a_{n}\right)=h\left(n, f\left(n, a_{1}, \ldots, a_{n}\right), a_{1}, \ldots, a_{n}\right)$;
where g, h are primitive recursive.
Examples of primitive recursive functions: addition, multiplication, exponentiation.

Later we will show the following theorem.
Theorem 5. Suppose that $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is primitive recursive. Then there is a Δ_{1} formula $\phi\left(x_{0}, \ldots, x_{k-1}, y\right)$, such that for all $a_{1}, \ldots, a_{k-1}, b$ in \mathbb{N},

$$
f\left(a_{1}, \ldots, a_{k-1}\right)=b \text { iff } \mathfrak{A} \models \phi\left[a_{1}, \ldots, a_{k-1}, b\right] .
$$

