MATH 430, SPRING 2022 NOTES MARCH 30 - APRIL 8

Below $\mathfrak{A} = (\mathbb{N}, \langle S, +, \cdot, 0, 1)$ is the standard model of PA. By compactness, PA has nonstandard models i.e. a model $\mathcal{B} \models PA$, such that $\mathcal{B} \not\cong \mathfrak{A}$. (See homework problem)

Now, suppose that \mathcal{B} is a nonstandard model of PA.

Theorem 1. \mathcal{B} is an end extension of \mathfrak{A} i.e. there is a one-to-one homomorphism $f : \mathbb{N} \to |\mathcal{B}|$ such that for all $a \in \operatorname{ran}(f)$ and $b \in |\mathcal{B}| \setminus \operatorname{ran}(f)$, $a <^{\mathcal{B}} b$.

Proof. Define f by $f(n) = (S^{\mathcal{B}})^n (0^{\mathcal{B}})$. f is one-to-one, since $PA \models S$ is one-to-one. Next we can verify that f is a homomorphism:

- $f(0) = 0^{\mathcal{B}}$ and $f(1) = S^{\mathcal{B}}(0^{\mathcal{B}}) = 1^{\mathcal{B}}$, by definition;
- n < m iff $f(n) <^{\mathcal{B}} f(m)$, this is because $PA \models S$ is order preserving.
- $f(S(n)) = S^{\mathcal{B}}(f(n))$, this is because $PA \models S^{n+1}(0) = S(S^n(0))$;
- f(n+m) = f(n) + f(m), this is because $PA \models S^{n+m}(0) = S^n(0) + S^m(0)$;
- $f(n \cdot m) = f(n) \cdot f(m)$, this is because $PA \models S^{n \cdot m}(0) = S^n(0) \cdot S^m(0)$;

Finally, suppose that $a \in \operatorname{ran}(f)$ and $b \in |\mathcal{B}| \setminus \operatorname{ran}(f)$. We have to show that $a <^{\mathcal{B}} b$. Since $a \in \operatorname{ran}(f)$, by definition of f, for some n, a = f(n). We show that $a = f(n) <^{\mathcal{B}} b$ by indiction on n:

- (1) if n = 0, since $PA \models 0$ is the least element, we have that $f(0) = 0^{\mathcal{B}} < b$.
- (2) n = k + 1 and inductively we assume that $f(k) <^{\mathcal{B}} b$. Then since $PA \models \forall x \forall y (x < y \rightarrow (S(x) < y \lor S(x) = y))$, we have that either $f(k+1) = S^{\mathcal{B}}(f(k)) = b$ of $f(k+1) <^{\mathcal{B}} b$. Since $b \notin \operatorname{ran}(f)$, it cannot equal f(k+1). So $f(k+1) <^{\mathcal{B}} b$.

It follows that \mathcal{B} contains an isomorphic copy of the natural numbers as an initial segment. For simplicity of notation, write *n* to denote $(S^{\mathcal{B}})^n (0^{\mathcal{B}})$. For example, we write 0 for $0^{\mathcal{B}}$, 1 for $S^{\mathcal{B}}(0) = 1^{\mathcal{B}}$, 2 for $S^{\mathcal{B}}(S^{\mathcal{B}}(0))$ and so on.

Similarly, for a formula $\phi(x_1, ..., x_n)$ and $a_1, ..., a_n$ in \mathbb{N} , we say that $PA \models \phi[a_1, ..., a_n]$, if for any model $\mathcal{B} \models PA$, $\mathcal{B} \models \phi[a_1, ..., a_n]$.

Definition 2. Let ϕ be a formula ϕ in the language of PA.

- (1) ϕ is Δ_0 if it is logically equivalent to a formula with only bounded quantifiers (or no quantifiers).
- (2) ϕ is Σ_1 if it is logically equivalent to a formula of the form $\exists x_1, ..., \exists x_n \psi$, where ψ is Δ_0 .

- (3) ϕ is Π_1 if it is logically equivalent to a formula of the form $\forall x_1, ..., \forall x_n \psi$, where ψ is Δ_0 .
- (4) ϕ is Δ_1 if it is logically equivalent to both a Σ_1 and a Π_1 formula.

Examples of Δ_0 formulas:

- all atomic formulas;
- $\phi_{div}(x, y) = \exists z < y(x \cdot z = y);$ $\phi_{prime}(x) = x > 1 \land \forall z < x(\phi_{div}(z, x) \rightarrow z = 1).$

Note that if ϕ is Σ_1 , then $\neg \phi$ is Π_1 . Similarly, if ϕ is Π_1 , then $\neg \phi$ is Σ_1 Also, if both ϕ and $\neg \phi$ are Σ_1 , then ϕ is Δ_1 .

Theorem 3. If $\mathcal{B} \models PA$, and $\phi(x_1, ..., x_n)$ is a Δ_0 -formula, then for any $a_1, ..., a_n$ in $\mathbb{N}, \mathfrak{A} \models \phi[a_1, ..., a_n]$ iff $\mathcal{B} \models \phi[a_1, ..., a_n]$.

Proof. This is by induction on the complexity of ϕ , using that \mathcal{B} is an end extension of \mathfrak{A} . Fix $\phi(x_1, ..., x_n)$ and natural numbers $a_1, ..., a_n$.

For the base case, if ϕ is atomic, by the existence of the function f in the proof of theorem 1, it follows that $\mathfrak{A} \models \phi[a_1, ..., a_n]$ iff $\mathcal{B} \models \phi[a_1, ..., a_n]$.

If ϕ is a negation or a conjunction, the statement follows by the inductive hypothesis.

Now, suppose that ϕ is of the form $\forall y < x_1\psi(x_1,...,x_n,y)$, where the inductive hypothesis holds for ψ . Then:

$$\mathfrak{A} \models \phi[a_1, \dots a_n]$$
 iff

for all $b < a_1, \mathfrak{A} \models \psi[a_1, \dots a_n, b]$ iff, by the inductive hypothesis,

for all natural numbers $b < a_1, \mathcal{B} \models \psi[a_1, ..., a_n, b]$.

For any $c \in |\mathcal{B}|$, if $c < a_1$, then $c \in \operatorname{ran}(f)$ i.e. it is a natural number. So, for all natural numbers $b < a_1, \mathcal{B} \models \psi[a_1, ..., a_n, b]$ iff $\mathcal{B} \models \phi[a_1, \dots a_n].$

As a corollary, one can show (the details are in your homework)

Corollary 4. Suppose $\mathcal{B} \models PA$ and $a_1, ..., a_n$ are in \mathbb{N} . Then

- (1) If $\phi(x_1, ..., x_n)$ is a Σ_1 -formula, if $\mathfrak{A} \models \phi[a_1, ..., a_n]$, then $\mathcal{B} \models \phi[a_1, ..., a_n]$.
- (2) If $\phi(x_1, ..., x_n)$ is a Π_1 -formula, if $\mathcal{B} \models \phi[a_1, ..., a_n]$, then $\mathfrak{A} \models \phi[a_1, ..., a_n]$.
- (3) If $\phi(x_1, ..., x_n)$ is a Δ_1 -formula, then $\mathfrak{A} \models \phi[a_1, ..., a_n]$ iff $\mathcal{B} \models \phi[a_1, ..., a_n]$.
- (4) If $\phi(x_1,...,x_n)$ is a Σ_1 -formula, then $\mathfrak{A} \models \phi[a_1,...a_n]$ iff $PA \models$ $\phi[a_1, \dots a_n].$

Proof. For the first three items, the proofs are assigned as homework. For the last one, fix a Σ_1 -formula $\phi(x_1, ..., x_n)$. For the first (easy) direction, suppose that $PA \models \phi[a_1, ..., a_n]$. Then since $\mathfrak{A} \models PA$, we have that $\mathfrak{A} \models$ $\phi[a_1, ..., a_n].$

For the other direction, suppose that $\mathfrak{A} \models \phi[a_1, ..., a_n]$. Then by item (1) above any for any model \mathcal{B} of PA, we have that $\mathcal{B} \models \phi[a_1, ..., a_n]$. It follows that $PA \models \phi[a_1, \dots a_n].$

The **primitive recursive functions** are (total) functions $f : \mathbb{N}^k \to \mathbb{N}$, that are built up from the constant function f(x) = 0, projections, and the successor function S, by applying composition and the primitive recursion operation:

- $f(0, a_1, ..., a_n) = g(a_1, ..., a_n);$
- $f(n+1, a_1, ..., a_n) = h(n, f(n, a_1, ..., a_n), a_1, ..., a_n);$

where g, h are primitive recursive.

Examples of primitive recursive functions: addition, multiplication, exponentiation.

Later we will show the following theorem.

Theorem 5. Suppose that $f : \mathbb{N}^k \to \mathbb{N}$ is primitive recursive. Then there is $a \Delta_1$ formula $\phi(x_0, ..., x_{k-1}, y)$, such that for all $a_1, ..., a_{k-1}, b$ in \mathbb{N} ,

 $f(a_1, ..., a_{k-1}) = b \text{ iff } \mathfrak{A} \models \phi[a_1, ..., a_{k-1}, b].$